A Cost-Sensitive Deep Belief Network for Imbalanced Classification
نویسندگان
چکیده
منابع مشابه
A PSO-Based Cost-Sensitive Neural Network for Imbalanced Data Classification
Learning from imbalanced data is an important and common problem. Many methods have been proposed to address and attempt to solve the problem, including sampling and cost-sensitive learning. This paper presents an effective wrapper approach incorporating the evaluation measure directly into the objective function of cost-sensitive neural network to improve the performance of classification, by ...
متن کاملCost-sensitive decision tree ensembles for effective imbalanced classification
Real-life datasets are often imbalanced, that is, there are significantly more training samples available for some classes than for others, and consequently the conventional aim of reducing overall classification accuracy is not appropriate when dealing with such problems. Various approaches have been introduced in the literature to deal with imbalanced datasets, and are typically based on over...
متن کاملCost-Sensitive Boosting for Classification of Imbalanced Data
The classification of data with imbalanced class distributions has posed a significant drawback in the performance attainable by most well-developed classification systems, which assume relatively balanced class distributions. This problem is especially crucial in many application domains, such as medical diagnosis, fraud detection, network intrusion, etc., which are of great importance in mach...
متن کاملAutomatic diagnosis of imbalanced ophthalmic images using a cost-sensitive deep convolutional neural network
BACKGROUND Ocular images play an essential role in ophthalmological diagnoses. Having an imbalanced dataset is an inevitable issue in automated ocular diseases diagnosis; the scarcity of positive samples always tends to result in the misdiagnosis of severe patients during the classification task. Exploring an effective computer-aided diagnostic method to deal with imbalanced ophthalmological da...
متن کاملCost Sensitive Learning of Deep Feature Representations from Imbalanced Data
Class imbalance is a common problem in the case of real-world object detection and classification tasks. Data of some classes are abundant, making them an overrepresented majority, and data of other classes are scarce, making them an underrepresented minority. This imbalance makes it challenging for a classifier to appropriately learn the discriminating boundaries of the majority and minority c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2019
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2018.2832648